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ABSTRACT
Given an arbitrary group of computers, how to identify abnormal

changes in their communication pattern? How to assess if the ab-

sence of some communications is normal or due to a failure? How

to distinguish local from global events when communication data

is extremely sparse and volatile? Existing approaches for anom-

aly detection in interaction streams, focusing on edge, nodes and

graphs, lack the flexibility to monitor arbitrary communication

topologies. Moreover, they rely on structural features that are not

adapted to highly sparse settings. In this work, we introduce MAD,

a novel Multi-scale Anomaly Detection algorithm that (i) allows to

query for the normality/abnormality state of an arbitrary group of

observed/non-observed communications at a given time; and (ii)

handles the highly sparse and uncertain nature of interaction data

through a scoring method that is based on a novel probabilistic

and multi-scale analysis of sub-graphs. In particular, MAD is (a)

flexible: it can assess if any time-stamped subgraph is anomalous,

making edge, node and graph anomalies particular instances; (b) in-
terpretable: its multi-scale analysis allows to characterize the scope

and nature of the anomalies; (c) efficient: given historical data of

length 𝑁 and 𝑀 observed/non-observed communications to ana-

lyze, MAD produces an anomaly score in O(𝑁𝑀); and (d) effective:
it significantly outperforms state-of-the-art alternatives tailored for

edge, node and graph anomalies.

KEYWORDS
Anomaly detection, Link streams, Multi-scale analysis, Anomalous

subgraphs
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1 INTRODUCTION
A link stream is a set of triplets (𝑡,𝑢, 𝑣) modeling that 𝑢 and 𝑣

interacted at time 𝑡 . Triplets in a link stream may represent that

computer 𝑢 sent a packet to computer 𝑣 at time 𝑡 or that bank

account 𝑢 made a transaction to account 𝑣 at time 𝑡 . Detection of
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Figure 1: Examples of normal and abnormal communication
patterns. A group of servers usually exchange between them
and with external users. Historical data may suggest that
interactions between blue-colored nodes are highly likely.
The sudden halt of likely traffic and the emergence of un-
likely one may be an indication of an attack (hackers have
taken control of the machines) or a failure (engineers are
troubleshooting).

likely/unlikely interactions that suddenly disappear/appear is an

important step towards identifying various events crucial interest,

such as financial frauds, network attacks, or infrastructure failures.

For example, consider the case illustrated in Figure 1, depicting in-

teractions between servers and users requesting their services. It is

rather normal that the servers frequently exchange traffic between

them and also with some regular users. Figure 1 represents such

users and servers that frequently interact in blue, while it represents

users that connect less frequently in grey. If at a given time the

communication pattern depicted in the left panel is observed, the

situation can be labeled as normal given that the observed inter-

actions only concern entities that usually interact together. Yet, if

the observation corresponds to the one depicted in the right panel,

such change in the communication pattern may be an indication

of a failure or an attack. Another example can be a bank account

that suddenly starts to make transactions to several unexpected

accounts. Such behavior may be indicative of a fraud. (hackers have

taken control of the machines) (engineers are troubleshooting)

To spot the aforementioned events, numerous link stream-based

anomaly detection algorithms have been proposed in recent years.

In a nutshell, such algorithms can be seen as black boxes that receive

two inputs, a query and a context, and answer to the question: how
abnormal is the query given the context? The essential differences

between proposed algorithms are: (i) which types of queries they

accept; (ii) how they define anomalies; and (iii) how they exploit the

context. For example, numerous algorithms accept time-stamped
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edges as queries, yet they differ in the criterion used to label a query

as abnormal: some do it when the query implies a sudden change in

edge counts [1], node embeddings [2], or walk statistics [3], while

others do it when the query cannot be well predicted from the

past [4, 5]. Algorithms addressing coarser resolution queries, like

time-stamped nodes [6, 7] or entire graph snapshots [8–11], have

also been proposed. Such algorithms also vary in their anomaly

definitions and use of context. Namely, nodes may be deemed abnor-

mal if they suddenly change their centrality [6] or communication

counts [7], while graphs may be considered abnormal if they have

sudden densifications [9], spectrum changes [10], or community

re-configurations [11], to list some examples.

In spite of numerous successes, existing anomaly detection algo-

rithms remain not fully satisfactory. In particular, the fact that they

only accept time-stamped subgraphs of a specific form as queries (ei-

ther edges, nodes, or entire graphs) makes them too rigid for several

real-world use cases. In many situations it is desirable to question an

algorithm if an arbitrary communication topology behaves abnor-

mally: take for instance the example of Figure 1, where one wants

to track the communications between a specific group of servers

and users; or take the case we aim to monitor the transactions

between a specific group of bank accounts believed to belong to a

criminal organization. To handle these different cases, an ultimate

solution is to dispose of an algorithm capable to respond to queries

consisting of arbitrary time-stamped subgraphs. Some algorithms

for anomalous subgraph detection have been proposed [12–14],

yet such approaches automatically search for subgraphs that meet

some criteria, like being a dense community, thus preventing users

from querying the algorithms with arbitrary subgraphs. It is also

worth noticing that most algorithms targeting coarse-grain queries

rely on anomaly definitions that do not satisfactorily account for

the highly uncertain and sparse nature of temporal interactions. For

example, many works rely on anomaly definitions that are based

on changes to node centralities, walk statistics, spectral proper-

ties or community structures. These definitions implicitly assume

dense link streams that slowly evolve, which may be unrealistic in

numerous situations.

The aim of this work is to address the limitations listed above.

We introduce MAD, a novel anomaly detection algorithm that (i)

accepts arbitrary time-stamped subgraphs as queries; and (ii) labels

queries as abnormal if they have/lack many unlikely/likely inter-

actions, thus allowing to handle the data uncertainty and sparsity.

MAD is based on a novel multi-scale probabilistic analysis for sub-

graphs that essentially permits to map a query sub-graph into a set

of random variables from which it is possible to identify the scale(s)

at which a queried sub-graph cannot be well explained from its

past activity. Our main contributions are as follows:

• Flexibility: MAD can be used to determine if any arbitrary time-

stamped subgraph is anomalous, thus making edge, node and

graph anomaly detection particular instances of our approach.

• Interpretability: the developed multi-scale analysis allows to iden-

tify the scale(s) and the nature of the event(s) making a query

abnormal.

• Efficiency: given a query of size 𝑀 and a historical context of

duration 𝑁 , MAD answers in O(𝑁𝑀).

• Effectiveness: MAD significantly outperforms state-of-the-art al-

ternatives for edge, node and graph anomaly detection in the tasks

of identifying communications that abnormally appear, disappear

or get redirected.

2 NOTATIONS AND RELATEDWORKS
2.1 Notations
Let 𝑉 be a set of vertices, 𝑇 refer to the non-negative integers,

E = 𝑉 ×𝑉 denote a relation space, and 𝜙 ⊆ E be an arbitrary set of

relations of size |𝜙 | = 𝑀 . A discrete-time link stream is denoted by

the set 𝐿 ⊆ 𝑇 × E. The restriction of 𝐿 to a time interval [𝑡1, 𝑡2] and
set of relations 𝜙 is expressed as 𝐿(𝑡1 : 𝑡2, 𝜙) = {(𝑡,𝑢, 𝑣) ∈ 𝐿 : 𝑡1 ≤
𝑡 ≤ 𝑡2, (𝑢, 𝑣) ∈ 𝜙}. The case 𝑡1 = 𝑡2 corresponds to a slice, or

snapshot, of 𝐿. Strictly speaking, the interactions of a slice remain

time-stamped, yet in some situations it is useful to strip the time

reference from them so that they can be considered as the edges of

a graph that is independent of time. Therefore, given the restriction

sets 𝑡1 = 𝑡2 = 𝑡 and𝜙 , we let 𝐿(𝑡 : 𝑡, 𝜙) refer to the slice of 𝐿 in which
interactions remain time-stamped, while we let 𝐿(𝑡, 𝜙) denote the
the case in which the time-stamps are striped-out. Relations are

considered directed, hence (𝑢, 𝑣) ≠ (𝑣,𝑢). Moreover, for the sake of

notation lightness, the relations emerging from node 𝑢 are denoted

by E𝑢 = {(𝑢, 𝑣) : 𝑣 ∈ 𝑉 }.
In this work, we extensively use indicator functions to charac-

terize subsets of a set: a binary function indicating which elements

from the set belong or not to the subset. The concept plays an

important role in this work given that algorithms working directly

with a set 𝐴 ⊆ 𝐵 cannot make decisions based on the elements of 𝐵

not included in 𝐴, as they ignore them; while algorithms working

with the indicator function know such information. Formally, the

indicator function of 𝐴 ⊆ 𝐵 is denoted by 1
𝐵
𝐴
: 𝐵 → {0, 1}, where

1
𝐵
𝐴
(𝑥) = 1 if 𝑥 ∈ 𝐴 and zero otherwise. Thus, the indicator function

of a link stream is given by 1
𝑇×E
𝐿

(𝑡,𝑢, 𝑣) = 1 if (𝑡,𝑢, 𝑣) ∈ 𝐿 and

zero otherwise. Also, with the aim of notation lightness, we denote

the sum of a function 𝑓 : 𝐵 → R over a sub-domain 𝐶 ⊆ 𝐵 by

𝑓 (𝐶) = ∑
𝑐∈𝐶 𝑓 (𝑐). Hence, 1𝐵𝐴 (𝐶) =

∑
𝑐∈𝐶 1

𝐵
𝐴
(𝑐) for 𝐶 ⊆ 𝐵. Lastly,

Q refers to a query and H to a historical context. The nature of Q
andH depend on the considered algorithm, as detailed next.

2.2 Related Works
The ultimate algorithm for link stream-based anomaly detection is

one that receives two arbitrary sub-link streams as inputs, constitut-

ing a query Q and a context H , and that responds to the question:

can the query be explained from the provided context? See Figure 2

for an illustration. Naturally, no algorithm is able to explore all the

possible ways in which an arbitrary query may be explained from

an arbitrary context. Thus, proposed algorithms in the literature es-

sentially narrow the search by (i) focusing on queries and contexts

that adhere to a specific form; and (ii) establishing a specific crite-

rion, or anomaly definition, that the query must possess in order

to be considered as explained by the context. As a result, there is a

rich variety of approaches that focus on different combinations of

inputs and anomaly definitions. In the following, we briefly review

algorithms proposed in the literature, structured according to types

of queries they handle. A summary is presented in Table 1.
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Figure 2: Unified view of anomaly detection. Algorithms aim
to assess the abnormality of a query in a given context.

Edge anomaly. Algorithms in this category respond queries

consisting of time-stamped edges. The difference between algo-

rithms lie in the criteria employed consider a query abnormal.

Namely, MIDAS [1] uses the historical time series of the query

edge to predict its future activity. It labels the query as abnormal if

it appears in a period predicted to be of low activity. F-FADE [2] uses

historical interactions to compute a node embedding that explains

edge frequencies. It considers a query as abnormal if its observed

frequency is unlikely according to the embedding. SEDANSPOT

[3] uses past interactions to estimate a graph of stable community

activity. It labels the query as abnormal if its inclusion to such

graph breaks random walks statistics. AER-AD [5] uses past in-

teractions to train a custom-made recurrent neural network for

link prediction. It labels a query as abnormal if it is not predicted

well by the model. PIKACHU [4] extracts temporal random walks

from historical interactions to train a custom-made encoder for link

prediction. It labels a query as abnormal if it is not predicted well.

Node anomaly. These algorithms focus on queries consisting

of time-stamped nodes, which can be represented by their set of

incident edges or by the indicator function of such set. It is worth

recalling that the difference between working with a set or with

its indicator function is that algorithms accepting the latter handle

both active and inactive interactions, while the former only the

active ones. DYNANOM [6] uses a short term context to monitor

the evolution of PageRank scores. It labels a query as abnormal

if its PageRank score drastically changed. BADSN [7] uses the

historical interactions of the query node to model the probability of

observing it with a given degree. It labels the query as abnormal if

the observed degree is unlikely according to the model. DSEDN [15]

uses past interactions to train an auto-encoder that embeds nodes

in a way that stable structures over time form clusters. It labels

a query as abnormal if it is an outlier in the embedding space.

GEABS [16] leverages historical interactions to fit a custom-made

generative model that jointly accounts for community structure

and node popularity. It labels a query as abnormal if its community

membership is unstable according to the model. DEGOD [17] uses

past interactions to compute the degree distribution of nodes over

time. It labels a query as abnormal if it causes the current degree

distribution to not match the past.

Graph anomaly. These algorithms accept entire time-stamped

slices of a link stream as queries. In particular, ANOMRANK [8]

uses a local context to track the evolution of PageRank scores of

vertices. It labels a query as abnormal if its first derivatives indicate

a drastic change. SPOTLIGHT [9] measures the density of random

partitions of historical data to compute a set of reference vectors. It

labels a query as abnormal if its corresponding vector is an outlier

Algorithm Query (Q) Context (H )

MIDAS [1] 𝐿(𝑡, (𝑢, 𝑣)) 𝐿(0 : 𝑡 − 1, (𝑢, 𝑣))
F-FADE [2] 𝐿(𝑡, (𝑢, 𝑣)) 𝐿(0 : 𝑡 − 1, E)
SEDANSPOT [3] 𝐿(𝑡, (𝑢, 𝑣)) 𝐿(0 : 𝑡 − 1, E)
DEGOD [17] 𝐿(𝑡, E𝑢 ) 𝐿(0 : 𝑡, E)
DYNANOM [6] 1

E𝑢

𝐿 (𝑡,E𝑢 ) 𝐿(𝑡 − 1 : 𝑡, E)
DSEDN [15] 1

E𝑢

𝐿 (𝑡,E𝑢 ) 𝐿(0 : 𝑡, E)
ANOMRANK [8] 1

E
𝐿 (𝑡,E) 𝐿(𝑡 − 2 : 𝑡, E)

SPOTLIGHT [9] 𝐿(𝑡, E) 𝐿(0 : 𝑡 − 1, E)
LAD [10] 1

E
𝐿 (𝑡,E) 𝐿(𝑡 − 𝑘 : 𝑡, E)

Table 1: Summary of themost representativeworks for anom-
aly detection in link streams.

with respect to the computed references. LAD [10] uses long-term

and short-term contexts to predict the spectral shape of the query

slice. It labels the query as abnormal if its spectrum is far from the

expected values. CADENCE [11] uses past interactions to identify

community structures that are stable over time. It labels a query

as abnormal if it implies a community reconfiguration. ODGS [18]

uses historical data to fit a community-oriented generative model.

A query is abnormal if it contains many inter-community edges.

Problem statement. As it can be seen from the list above, pro-

posed algorithms essentially fix a time 𝑡 and a group of relations 𝜙

of a specific form: 𝜙 = (𝑢, 𝑣), 𝜙 = E𝑢 , or 𝜙 = E and address 𝐿(𝑡, 𝜙)
as queries. While this allows to tackle many abnormal events, the

fact that 𝜙 must possess a specific form (either edges, nodes, or

graphs) drastically limits the flexibility and effectiveness of algo-

rithms in many application scenarios, like the one illustrated in

Figure 1 where one may be interested in monitoring an arbitrary

group of communications. This calls for an algorithm that allows to

set𝜙 as an arbitrary subgraph. Some algorithms have been proposed

to address the case in which 𝜙 is a community clique [12–14]. Yet,

such algorithms automatically search for the communities, thus

they prevent users to query them. Moreover, we stress that the

community criterion assumes dense link streams slices, which is

unrealistic in most real-world interaction data. Thus, the aim of this

work is to address these two situations: to propose an algorithm

that allows to set 𝜙 as an arbitrary subgraph and that does it by

taking into account the highly uncertain and sparse nature of link

streams.

3 PROPOSED ALGORITHM
In this section, we introduce MAD, our proposed algorithm for

anomaly detection. In addition to being able to respond to arbitrary

time-stamps as queries, we aim that MAD also takes into account

that (i) real-world interactions are highly dynamic and uncertain;

and (ii) anomalous events can be of different scales. Indeed, in inter-

action data, it is normal that persons, computers, or bank accounts

that register an interaction at a time 𝑡 do not register another one

at time 𝑡 + 1, even though it may not be surprising if it occurs, thus

making the data highly dynamic and uncertain. Moreover, notice

that an intrusion by a hacker may be at the scale of only one or a

3
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few communications, while an infrastructure failure may involve

most of them. To account for these situations, develop MAD in

two steps. Firstly, in Section 3.1, we develop its scoring function

based on novel multi-scale analysis of subgraphs. This multi-scale

analysis assumes the existence of a probabilistic model explaining

the uncertainty seen in the data, and builds upon it to define a set

of multi-scale random variables that allow to spot observations

that deviate from the past in a way that cannot be explained from

the usual uncertainty. Then, in section 3.2, we focus on the task

of estimating such probabilistic model from the historical context.

We do it by assuming that normal interactions should be locally

stationary, for which design a stationary test that allow us to de-

termine the time interval in which the data is locally stationary

and from which the model can be estimated. In sum, MAD is a

multi-scale anomaly detection algorithm that accepts Q = 1
𝜙

𝐿 (𝑡,𝜙 )
andH = 𝐿(𝑡 − 𝑁 : 𝑡 − 1, 𝜙) as inputs, where 𝜙 is an arbitrary sub-

graph and 𝑁 is the context duration, and returns an anomaly score

denoted by 𝑠𝑐𝑜𝑟𝑒 (Q).

3.1 A multi-scale analysis of sub-graphs
Our goal is to assess if the binary state (active or inactive) of a

group of relations 𝜙 ⊆ E at time 𝑡 is abnormal. For simplicity, we

denote the set of active relations is by
ˆ𝜙 := 𝐿(𝑡, 𝜙) and its binary

state function by 1
𝜙

ˆ𝜙
:= 1

𝜙

𝐿 (𝑡,𝜙 ) . As mentioned above, an important

property to take into account concerns the uncertainty relative

to each interaction involved in 𝜙 . Thus, we interpret that 𝜙 is the

result of a random processes. In particular, we assume the existence

of a function 𝑃 : 𝜙 → [0, 1] so that the state of each 𝑒𝑖 ∈ 𝜙

is seen as the result of running a Bernoulli trial with probability

𝑃 (𝑒𝑖 ): if the trial is successful then 1𝜙
ˆ𝜙
(𝑒𝑖 ) = 1 and zero otherwise.

In complex networks terminology, this is equivalent to interpret

that 1
𝜙

ˆ𝜙
is generated by an extended Erdös-Rényi model where the

probabilities of edges are individually tuned. Then, we consider an

observation 1
𝜙

ˆ𝜙
as abnormal if it is unlikely to have been generated

by such process. Throughout the rest of this subsection, we assume

that 𝑃 is known and that it accurately models normality. In practice,

we must estimate 𝑃 from H . Section 3.2 addresses such problem.

Given our assumed probabilistic model, a simple and straight-

forward way to spot unlikely realizations at the subgraph level

consists in computing the exact probability of observing 𝜙 , which

is given by:

𝑃𝑟 (1𝜙
ˆ𝜙
) = Π

𝑒𝑖 ∈ ˆ𝜙
𝑃 (𝑒𝑖 ) × Π

𝑒 𝑗 ∈𝜙\ ˆ𝜙 (1 − 𝑃 (𝑒 𝑗 )) . (1)

However, while simple, this approach is unsatisfactory for anom-

aly detection for the following two reasons: (i) small-scale anom-

alies have little impact in (1); and (ii) expected observations are not

ranked as the most probable (hence normal) by (1). Indeed, notice

that a few abnormal edges may not drive the value of (1) sufficiently

low to be considered a clear anomaly. Moreover, consider a case

where 𝜙 = {𝑒1, 𝑒2, 𝑒3} and 𝑃 (𝑒𝑖 ) = 1/3 for all 𝑒𝑖 . According to (1),

the most probable observation for this setting is the empty sub-

graph, i.e. when
ˆ𝜙 = ∅. This is undesirable as the empty subgraph

is not the one expected to appear from such process: it is expected

one success out of those three Bernoulli trials. Thus, this raises the

question of how to find meaningful anomaly scores that allow to

spot either small or large scale anomalies.

Interestingly, a potential alternative consists in using random

variables that measure properties of the analyzed subgraphs, like

their number of active relations | ˆ𝜙 |. The advantage of using random
variables is that we can characterize the the values they take when

they are computed on subgraphs generated by the underlying pro-

cess. Thus, when rare values are observed, the underlying subgraph

can be considered anomalous. The challenge with this approach

mainly lies in how to define meaningful random variables that

measure the necessary properties to spot all targeted anomalies.

For instance, | ˆ𝜙 | is a useful random variable that allows to readily

spot densification or sparsification events by using its expected

value as a reference. However, | ˆ𝜙 | alone is not enough to detect

all anomalies: an event where 𝑘 likely relations are inactive and 𝑘

unlikely ones are active would be normal by only using the criterion

of | ˆ𝜙 |. In the following, we address this challenge by introducing a

multi-scale analysis of subgraphs. This multi-scale analysis defines

a group of 𝑀 = |𝜙 | random variables that quantify and compare

the activity of the query subgraph at multi resolution scales. We

show that it is possible to characterize the distribution of these

random variables for normal queries, allowing us to spot the scale

and group of relations that make a given observation anomalous.

Let us begin the development of our multi-scale analysis of 1
𝜙

ˆ𝜙
by

making two assumptions about its domain. Firstly, we assume𝑀 =

|𝜙 | to be a power of two. If 𝜙 lacks relations for this to hold, then we

assume that virtual elements 𝑒𝑖 of probability 𝑃 (𝑒𝑖 ) = 0 are added

into 𝜙 until the assumption holds. We stress that the inclusion of

these virtual relations is of pure mathematical convenience and they

do not hinder our analysis as those elements are always switched-off

in 1
𝜙

ˆ𝜙
, which is in agreement with their null probability. Secondly,

we assume that that the elements of 𝜙 are indexed in decreasing

order of their probability. This is, we assume that 𝑃 (𝑒1) ≥ · · · ≥
𝑃 (𝑒𝑖 ) ≥ 𝑃 (𝑒𝑖+1) ≥ · · · ≥ 𝑃 (𝑒𝑀 ) for all 𝑒𝑖 ∈ 𝜙 . Based on these

assumptions, the first step of our multi-scale analysis consists in

recursively partitioning 𝜙 at different resolution scales. To do it,

we set an initial set E (0)
0

= 𝜙 that we split in halves according

to the probability of its elements: the top-half likely relations are

assigned to a set E (1)
0

= {𝑒1, . . . , 𝑒𝑀
2

} and the bottom-half ones to

a set E (1)
1

= {𝑒𝑀
2
+1, . . . , 𝑒𝑀 }. This recursive partitioning is applied

until singletons are obtained E (log
2
(𝑀 ) )

𝑖
= 𝑒𝑖 . For a visual reference,

see the binary tree structure displayed in Figure 3, where the root

node is E (0)
0

and the children nodes represent the partitioned sets.

Algebraically, the partitioning rule is:

E (ℓ )
𝑘

= E (ℓ+1)
2𝑘

∪ E (ℓ+1)
2𝑘+1 , (2)

where

E (ℓ )
𝑘

=

{
𝑒𝑖 ∈ 𝜙 :

𝑘𝑀

2
ℓ

+ 1 ≤ 𝑖 ≤ (𝑘 + 1)𝑀
2
ℓ

}
(3)

Thus, the procedure above partitions 𝜙 into disjoint subgraphs at

different resolutions, as indicated by the super-script ℓ . Particularly,

2
ℓ
partitions arise at level ℓ and they satisfy the following crucial

property: no relation contained in E (ℓ )
𝑘+1 is more probable than the

4
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relations contained in E (ℓ )
𝑘

. In the second step of our analysis, we

leverage this property by defining random variables that compare

the activity of E (ℓ )
𝑘

with that of E (ℓ )
𝑘+1. This is a natural approach to

spot anomalies at multiple scales, as we know that, by construction,

E (ℓ )
𝑘

should be more active than E (ℓ )
𝑘+1. In precise terms, we define

the following set of random variables:

𝑠 =
1

√
𝑀
1
𝜙

ˆ𝜙
(𝜙) , (4)

and

𝑤
(ℓ )
𝑘

=

√
2
ℓ

√
𝑀

[
1
𝜙

ˆ𝜙

(
E (ℓ+1)
2𝑘

)
− 1𝜙

ˆ𝜙

(
E (ℓ+1)
2𝑘+1

)]
. (5)

for all𝑘 and ℓ . In total, (4) and (5) define𝑀 random variables as there

are 2
ℓ
sets associated to ℓ and this one runs from 0 to log

2
(𝑀) − 1.

Therefore, by doing this analysis we do not change the size of the

problem: we transition from analyzing the state of𝑀 relations in

1
𝜙

ˆ𝜙
to𝑀 random variables. Moreover, it is worth noticing that the

random variables can be computed in O(𝑀) using the binary tree

shown in Figure 3: by setting 1
𝜙

ˆ𝜙
in the leaves, successive parents

compare the activity of relations appearing in their left and right

branches, producing the desired random variables.

Concerning the analysis of the random variables, notice that 𝑠

corresponds to a normalized version of | ˆ𝜙 |, which, as mentioned pre-

viously, is relevant to detect densification or sparsification events.

The variables𝑤
(ℓ )
𝑘

, on the other hand, allow to spot the anomalies

not captured by 𝑠 . They do it by comparing the activity between

E (ℓ )
𝑘

and E (ℓ )
𝑘+1, where the former has relations that are more prob-

able to appear than the latter. This way, a group of likely relations

in E (ℓ )
𝑘

suddenly disappearing and a group of less likely ones in

E (ℓ )
𝑘+1 suddenly appearing have a strong impact in𝑤

(ℓ )
𝑘

. A natural

question that may arise is why (5) only compares activity between

such specific choices of subsets of relations, given that there are

many more ways in which two groups, one with elements more

probable than the other, can be chosen and used to define similar

random variables. Our next result demonstrates that the family

defined by (4) and (5) already contains all the necessary details to

discern anomalies, as it does not involve any information loss about

1
𝜙

ˆ𝜙
.

Proposition 1. Let 1𝜙
ˆ𝜙
and {𝑠,𝑤 (ℓ )

𝑘
} denote a binary state func-

tion and its associated set of random variables as defined in (4) and
(5), respectively. It holds that:

1
𝜙

ˆ𝜙
=

1

√
𝑀
𝑠1
𝜙

𝜙
+
∑︁
ℓ,𝑘

√
2
ℓ

√
𝑀
𝑤

(ℓ )
𝑘

[
1
𝜙

E (ℓ+1)
2𝑘

− 1𝜙
E (ℓ+1)
2𝑘+1

]
. (6)

The interesting connection between this multi-scale analysis and

the assumed random process is that the first and second theoretical

moments of 𝑠 and 𝑤
(ℓ )
𝑘

can be expressed in terms of 𝑃 . This is a

crucial property for anomaly detection as it allows to characterize

the ranges of values that 𝑠 and𝑤
(ℓ )
𝑘

normally take when they are

computed on realizations generated by 𝑃 . Our next result states

this connection.

Proposition 2. Let E[·] and 𝜎2 [·] denote the expectation and
variance operators, respectively. If the functions 1𝜙

ˆ𝜙
are drawn from

the generative model defined above, it holds that:

(a) E[𝑠] = 1√
𝑀
𝑃 (𝜙),

(b) E[𝑤 (ℓ )
𝑘

] =
√
2
ℓ√
𝑀

[
𝑃

(
E (ℓ+1)
2𝑘

)
− 𝑃

(
E (ℓ+1)
2𝑘+1

)]
,

(c) 𝜎2 [𝑠] = 1

𝑀

∑
𝑒𝑖 ∈𝜙 𝑃 (𝑒𝑖 ) [1 − 𝑃 (𝑒𝑖 )],

(d) 𝜎2 [𝑤 (ℓ )
𝑘

] = 2
ℓ

𝑀

∑
𝑒𝑖 ∈E (ℓ )

𝑘

𝑃 (𝑒𝑖 ) [1 − 𝑃 (𝑒𝑖 )] .

From the Chebyshev inequality, we know that the probability

that a random process produces observations of a random variable

that are 𝜆 standard deviations away from its expectation cannot be

larger than 1/𝜆2. Hence, our suspicion about an observation should

increase quadratically in the number of standard deviations that

its random variables values are away from the mean. Based on this

property, we can define an anomaly score for each random variable

given as the inverse of its Chebyshev bound. If we let 𝑥𝑖 denote the

𝑖-th random variable, then its anomaly score is given as follows:

score(𝑥𝑖 ) = (𝑥𝑖 − E[𝑥𝑖 ])2/𝜎2 [𝑥𝑖 ] . (7)

If we aim to favor interpretability, we can return the𝑀 anomaly

scores above as the output of the algorithm, allowing an user to

identify which parts of the query subgraph are at the origin of an

anomaly. For simplicity, we return a single anomaly score summa-

rizing the the total anomaly level of the query. Yet, we stress that,

for a more refined study, it is possible to recompute our multi-scale

analysis on the queries that our approach identifies as abnormal.

We produce anomaly score for the entire query as follows:

score(1𝜙
ˆ𝜙
) = (𝑠 − E[𝑠])2

𝜎2 [𝑠]
+
∑︁
ℓ,𝑘

(
𝑤

(ℓ )
𝑘

− E[𝑤 (ℓ )
𝑘

]
)
2

𝜎2 [𝑤 (ℓ )
𝑘

]
. (8)

Figure 3 provides a comprehensive illustration of our multi-scale

approach to anomaly detection. In short, MAD takes as input an

history of past interactionsH and query Q. It constructs a model 𝑃

from H (see Section 3.2) and uses it to set the ordering of the tree.

Then, it uses the tree decompose the query into a set of random

variables. MAD also uses the model to estimate the theoretical

moments of the multi-scale random variables. Then, it measures

how many standard deviations away from the mean the query is in

order to set an anomaly score. While MAD sets equal importance to

the different random variables involved in the computation of the

anomaly score, making both large-scale or small-scale anomalies

equally relevant, we stress that it is possible to favor anomalies at

any desired scale by giving more weight to the random variables

associated to such level.

3.2 Estimation of the Model Probabilities
The question of estimating the model 𝑃 assumed above from histor-

ical dataH is now addressed. This is a key issue as the normality

assessment of the query depends on it. Thus, we must compute 𝑃

so that it captures what we intend by normality. In this work, it

is assumed that normal interactions should be locally stationary.

5
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Figure 3: Schematic representation of the proposed multi-scale approach for anomaly detection.

Stationarity means that the underlying random process generating

the data remains stable over time. Thus, we assume that there is

a single model that produced interactions in the recent past and

that, in order to consider the interactions at time 𝑡 as normal, they

should also be generated by such model. Hence, our challenge is to

spot the model that produced interactions in the recent past and use

it to define normality at time 𝑡 . Notice that if we identify a window

in which the interactions are stationary, then we can straightfor-

wardly estimate 𝑃 through a simple time averaging. This is because

stationarity means that all the observed states of relation 𝑒𝑖 over

time are samples of the same Bernoulli experiment of probability

𝑃 (𝑒𝑖 ). Hence, 𝑃 (𝑒𝑖 ) can be estimated from its time samples as:

𝑃 =
1

𝐾

𝐾∑︁
𝑘=1

1
𝜙

𝐿 (𝑡−𝑘,𝜙 ) (9)

where 𝐾 is the length of the stationary window. The challenge of

estimating 𝑃 therefore lies in identifying a sub-window of length 𝐾

from the context of length 𝑁 in which all the slices are stationary.

Notably, we can leverage our multi-scale analysis to design a simple

stationarity test that addresses this challenge.

The idea of our stationarity test is an hypothesis testing one: we

hypothesize that the window is stationary and then we try to reject

the hypothesis using our multi-scale analysis. Assuming stationary

means that all the 𝐾 slices within the window are realizations of

one same 𝑃 , which can be estimated as in (9). Then, if we com-

pute one of our random variables across all the slices within the

window, we must obtain 𝐾 values that are distributed as predicted

by Proposition 2, given that they are realizations of the same 𝑃 .

One can assess is these 𝐾 values are indeed distributed in such

way by comparing their sample moments with the theoretical ones

predicted by Proposition 2. The stationarity hypothesis is therefore

rejected if these distributions differ from each other. Based on this

stationarity test, we can automatically explore the 𝑁 -length con-

text to identify the sub-window of size 𝐾 in which the stationarity

assumption best holds. This is done by simply growing a window

Synthetic Hospital Emails Traffic

Triplets 1.24M 32.4K 30.7K 382K

Nodes 925 75 1646 1622

Max. time 5K 17.4K 44.5K 7.2K

Empty slices 0 7.9K 32K 0

Activity peak 308 20 76 94

Table 2: Datasets statistics.

backwardly, starting from 𝑡 − 1, for all possible values of 𝐾 . Then,

we run our stationarity test for each window and retain the one in

which the distributions best match. The match of distributions is

quantified by setting a fitness score given by the sum of squared

differences between the sample and theoretical variance for each

random variable.
1

4 NUMERICAL EXPERIMENTS
This section evaluates the performance of MAD through experimen-

tation that aim to address the following questions. Q1. Accuracy:
how accurately can MAD detect anomalous events consisting of

likely/unlikely interactions that suddenly disappear/appear com-

pared to state-of-the-art alternatives? Q2. Flexibility: can MAD

handle equally well queries of varying form? Q3. Interpretability:
can MAD allow to characterize the signature of abnormal events?

The implementation ofMAD and code to reproduce the experiments

is available in https://anonymous.4open.science/r/MAD_Sub-AE3E

Datasets. One synthetic and three real world datasets are used

(Table 2). The synthetic one is composed of a graph sequence with

stable community structure but where some edges appear more

frequently than others. It is done by fixing a model 𝑃 and generating

a sequence of realizations according to the procedure detailed in

Section 3.1. The model 𝑃 consists of a heterogeneous stochastic

1
Only the variance is employed as the fact that 𝑃 is estimated using a sample mean

implies that the expectations from Proposition 2 equal the sample ones.

6

https://anonymous.4open.science/r/MAD_Sub-AE3E


807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

MAD: Multi-Scale Anomaly Detection in Link Streams ACMWSDM 2024, March 04–08, 2024, Mérida, Yucatán, Mexico

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

block model: edges within and between communities have different

probabilities. See the supplementary for a detailed description of

how the model is set. Real datasets are: Hospital [19] containing
temporal interactions between patients and health-care workers in

a hospital ward. Slices represent interactions within a 20-second

resolution interval. Emails [20]: the directed network of emails in

the 2016 Democratic National Committee email leak. Slices repre-

sent emails within a one-minute interval. Traffic [21]: two-hours of
TCP traffic between the Lawrence Berkeley Laboratory and the rest

of the world. Slices represent traffic within a one-second interval.

In general, these datasets are very dynamic and sparse.

Anomaly injection. There are no known anomalies within

the selected datasets. Therefore, the whole datasets are considerd

normal and different abnormal events are added: (i) sudden den-

sifications; (ii) sudden sparsifications; and (iii) sudden rewirings.

We inject abnormal events according to the type of queries to be

assessed (see the supplementary for a full description):

• Edge anomalies. A relation (𝑢, 𝑣) is randomly selected and

attacked at various times. Densification attacks make (𝑢, 𝑣)
active at times where it is very infrequent, while sparsi-

fication attacks suppress (𝑢, 𝑣) at times where it appears

frequently. For each dataset, we attack 50 relations.

• Node anomalies.A randomly selected node is attacked at var-

ious times with densifications/sparsifications or rewirings.

The former attack injects/suppresses communications emerg-

ing from the attacked node, while the latter redirects its

communications towards other nodes. We make sure that

created edges due to densifications or rewirings always

point towards nodes that the attacked node has already

communicated with in the past. For each dataset, 10 nodes

are attached over time and each attack is bounded to 3

edges.

• Graph anomalies. Anomalies here concern densification/-

sparsification or rewiring events applied to link stream

slices chosen at random. For each dataset, 1% of its active

slices are attacked. Attacks are bounded to 5 edges.

Baselines. Six state-of-the-art algorithms form the baselines.

Two for edge anomalies: MIDAS [1] and F-FADE [2]. Two for node

anomalies: DynAnom [6] and F-FADE-N [2], the variant of F-FADE

proposed by their authors to address node anomalies. Two for graph

anomalies: AnomRank [8] and LAD [10].

4.1 Accuracy of MAD
This subsection aims to address Q1 andQ2 by assessing the accuracy

of MAD and baselines, in AUC score, in the tasks of edge, node and

graph anomaly detection. For all experiments we tried numerous

hyper-parameters configurations and retained the best ones. See

the supplementary for our choices of hyper-parameters.

Edge detection. To assess the accuracy of MAD and edge-

anomaly baselines, the algorithms are questionned as follows: for

each relation (𝑢, 𝑣) that was attacked by our injection method, we

ask algorithms to produce an anomaly score for (𝑢, 𝑣) at all possible
timestamps. Algorithms must then return high scores for times-

tamps at which (𝑢, 𝑣) was attacked. Two versions of each dataset

are analyzed, one with injected densifications and one with injected

sparsifications.

MIDAS F-FADE MAD

Densification

Synthetic 0.49 0.53 0.58
Hospital 0.50 0.80 0.82
Emails 0.73 0.98 0.76

Traffic 0.52 0.56 0.76

Sparsification

Synthetic - - 0.80
Hospital - - 0.85
Emails - - 0.84
Traffic - - 0.89

Table 3: Edge anomaly detection performance in AUC.

F-FADE-N
∗

DynAnom MAD

Densification

&

Sparsification

Synthetic 0.52 0.56 0.88
Hospital 0.82 0.51 0.92
Emails 0.82 0.54 0.84
Traffic 0.77 0.51 0.74

Rewiring

Synthetic 0.53 0.52 0.83
Hospital 0.57 0.54 0.99
Emails 0.59 0.51 0.99
Traffic 0.53 0.54 0.99

Table 4: Node anomaly detection performance in AUC. ∗F-
FADE-N is evaluated only on the subset of scores that it is
able to produce.

Results are reported in Table 3. As it can be seen, MAD system-

atically performs well in the detection of both densification and

sparsification events, while MIDAS and F-FADE are inconsistent in

the detection of densifications and they cannot handle sparsifica-

tion anomalies. Such inconsistent behavior may be due to the fact

that (i) MIDAS considers global aggregates and hence is agnostic

to short intervals of low activity; and (ii) F-FADE requires a sta-

ble embedding to produce accurate frequency estimations and is

only able to attain it for the datasets that have many empty slices.

Moreover, we stress that MIDAS and F-FADE cannot respond to

queries consisting of inactive relations, making them unable to spot

sparsifications. Notice that MAD solves these two issues by being

able to spot the two anomaly types and in a consistent manner.

Additionally, MAD does it by just considering a context based on

the past activity of the query edge while F-FADE needs to use all

the past link stream interactions.

Node detection. MAD and baselines are also evaluated in a

node detection setting trough a similar experimental setup: algo-

rithms are asked to determine the abnormality of each node 𝑢 that

was attacked for all possible timestamps. F-FADE-N is not able to

produce an answer for queries with no communications in them,

hence its accuracy is assessed on the subset of scores that it is

able to produce. Two versions of each dataset are analyzed, one

with injected densifications/sparsifications and one with rewiring

events.
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Table 4 clearly shows that MAD performs very well in the de-

tection of both sparsification/densification and rewiring events. In

particular, MAD is able to detect the rewiring events in the real

datasets with almost perfect accuracy. Such a performance of MAD

is due to the fact that rewiring events in those very sparse datasets

essentially replace their few likely edges with only unlikely ones,

making the attacked queries extremely inconsistent with the recent

past. It can be observed that F-FADE-N performs well in detecting

densifications/sparsifications, even though it only produces an out-

put at times in which the queried nodes have communications in

them. Thus, a massive event that completely shuts-down a node

would be missed by F-FADE-N. DynAnom systematically performs

very poorly. This poor performance should not come as a surprise:

DynAnom bases its anomaly scores on the stability of the PageRank

of nodes, which clearly is not a meaningful feature for such sparse

and fastly evolving link streams.

Graph detection. The accuracy of MAD and baselines are eval-

uated in a graph detection setting by feeding the algorithms with

the slices of the attacked datasets. Two versions of each dataset are

analyzed, one with injected densifications/sparsifications and one

with rewiring events.

Results are reported in Table 5. As it can be seen, MAD performs

very well in the detection of both events regardless of the dataset,

while LAD performs inconsistently and AnomRank very poorly. As

in the node case, attacks make likely edges disappear and unlikely

ones appear. Therefore, MAD sees those collective events as hard to

explain from the context, explaining its good accuracy. LAD is in-

consistent as it depends on the stability of eigenvalue distributions,

which is not guaranteed when edges are fully replaced between

snapshots. AnomRank relies on PageRank, thus it suffers from the

same issues of DynAnom.

4.2 Interpretability of MAD
In this subsection, Q3 is addressed by studying how the different

attacks influence the individual anomaly scores produced by Equa-

tion (7). This study is conducted by (i) taking our model 𝑃 used to

generate synthetic data; (ii) generating a normal graph using the

model; (iii) applying different types of attacks on this graph; (iv)

performing the multi-scale analysis to each of the resulting graphs;

and (v) computing the anomaly scores of each random variable.

Figure 4 displays the distribution of anomaly scores for the dif-

ferent types of attacks. The random variables are ordered so that

the left-most ones in the plot are the ones associated to the coars-

est scales, i.e. 𝑠 and 𝑤
(0)
0

, and the right-most ones are the ones

associated to the finest scales. As it can be seen, the normal graph

produces low anomaly scores for most random variables: only few

fine-scale ones have large scores, which is due to the inherent un-

certainty associated to a graph generated at random. When this

graph is subject to a densification attack, it can be seen that a large

number of random variables immediately activate producing large

scores. Since the likely edges remain present in the graph and the

majority of unlikely ones remain inactive in the attacked graph,

the large scores mostly appear at fine scales as most of the activity

in the graph remains well explained by the model. Yet, notice that 𝑠

immediately activates pointing the densification. Notice that a spar-

sification attack suppresses most likely edges and this immediately

AnomRank LAD MAD

Densification

&

Sparsification

Synthetic 0.49 0.50 0.76
Hospital 0.51 0.80 0.95
Emails 0.54 0.92 0.98
Traffic 0.43 0.46 0.77

Rewiring

Synthetic 0.59 0.52 0.63
Hospital 0.58 0.77 0.94
Emails 0.53 0.87 0.87
Traffic 0.44 0.55 0.85

Table 5: Graph anomaly detection performance in AUC.

Figure 4: Distribution of anomaly scores across random vari-
ables. Different attacks produce different signatures.

triggers the scores associated to coarse resolutions, particularly 𝑠

and𝑤
(0)
0

. 𝑠 because the activity of this graph does not match the

expected one, and 𝑤
(0)
0

because the attack mostly affect the left-

side of the tree, making the scores mount at the top levels. Since

a rewiring attack is essentially a combination of a sparsification

and a densification, one can remark that the anomaly scores of this

event combine the signature of the previous two. Thus, in sum,

the different attacks produce different signatures in our anomaly

scores, paving the way to study the signature of more complex and

real events as further research.

5 CONCLUSION
In this work we introduced MAD, a multi-scale anomaly detection

algorithm for link streams that allows to evaluate if any arbitrary

time-stamped subgraph is abnormal. Through a numerical eval-

uation, we demonstrated that MAD performs significantly better

than state-of-the-art alternatives, even when the data at hand is

very uncertain and sparse, in the tasks of detecting edges, nodes or

graphs that were subject to densification, sparsification and redirec-

tion attacks. This flexibility and good accuracy of MAD stems from

its scoring mechanism, which builds on a novel probabilistic and

multi-scale analysis of sub-graphs that allows to decompose them

into a set of random variables that capture anomalies at various

resolution scales. This makes MAD not only accurate but also inher-

ently interpretable and theoretically sound. The next step concerns
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the combination of MAD with an anomaly explanation mechanism

to assist final users in the analysis of the found anomalies.
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