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36 million web-sites created per minute
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5.5 million videos watched per minute

4.3 billion people connected to Internet
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The big data era

36 million web-sites created per minute

188 million emails sent per minute

55 thousand photos posted per minute

5.5 million videos watched per minute

4.3 billion people connected to Internet

Goal

Categorize websites by topic

Categorize emails as spam or not

Categorize photographies by genre

Predict social trends based on videos watched

Predict political preferences based on navigation patterns
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Classification

F : Rd → {1, . . . ,K}



The Goal of Machine Learning

Introduction Motivation November 16, 2021 5 / 38

Regression



The Goal of Machine Learning

Introduction Motivation November 16, 2021 5 / 38

Regression



The Goal of Machine Learning

Introduction Motivation November 16, 2021 5 / 38

Regression
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The Supervised Learning Paradigm

• Training dataset: set of points {(x1, y1), . . . , (xn, yn)} where F is known

• Learning: use the training dataset to infer F for the remainder of data

Classical methods

Linear Regression Nearest Neighbors Support Vector Machine
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Modern methods: Neural networks
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The Unsupervised Learning Paradigm

• No training dataset

• Learning: find patterns in the data

• Hypothesis: similar points are likely to be of the same category

Classical methods

K-means Mixture models Matrix factorization
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Modern methods: Autoencoders

Image taken from [D. Bank et al. Autoencoders. arXiv preprint arXiv:2003.05991]
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1. Data often lies in a low dimensional manifold

Dataset
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1. Data often lies in a low dimensional manifold

2. Labelled data are often expensive to collect

Few training data Supervised classifier
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1. Data often lies in a low dimensional manifold

2. Labelled data are often expensive to collect

Graph from data

Community detection

Learning via graph + labels
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1. Data often lies in a low dimensional manifold

2. Labelled data are often expensive to collect

3. Network-structured data are ubiquitous
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Node classification

• Documents by topic

• Email spam or not

• Power shutdown

Graph classification

• Graph isomorphism

• Drug synthesis

• Voice recognition

Link prediction

• Predict failures

• Social modeling

• Text generation
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In all cases, we still look for a function F . Yet, it is now supported in a
graph-based domain instead of a euclidean one.

• Node classification: the domain of F is the set of vertices

• Graph classification: the domain of F is the space of all graphs

• Link prediction: the domain of F is the set of edges
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• How to learn F supported on graph data?

. Cannot use ML models that operate on euclidean domains or
regular grids

• Graphs are combinatorial objects where optimization leads to exponential
search

. Node classification: groups of nodes with small cut

. Graph classification: existence of a cycle

• These limitations are relaxed by embedding the graph into an euclidean
space

. Embeddings can be done via matrix factorization or diffusion
processes
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Graph embedding
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Graph embedding

The recipe of graph-based machine learning

Learning on graphs = graph embedding + model for learning on euclidean data
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The architecture
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The Perceptron rule

Activation functions
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The output

ŷ = σ(l)(W(l) . . . σ(2)(W(2)σ(1)(W(1)x)) . . . )

• Training: adjust W(·) to minimize E = ‖ŷi − yi‖ on the training set
(SGD algorithm)

• The dilemma: width vs depth

. Deep Neural Network: Networks with more than 2 hidden layers

. Empirically more layers improves learning but significantly
complicates training
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ŷ = σ(l)(W(l)h(l−1))

h(k) = σ(k)(W(k)h(k−1))

• Training: adjust W(·) to minimize E = ‖ŷi − yi‖ on the training set
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The output

• Training: adjust W(·) to minimize E = ‖ŷi − yi‖ on the training set
(SGD algorithm)
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. Empirically more layers improves learning but significantly
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The loss E = ‖ŷi − yi‖ is a high-dimensional function of the weights W(·)

Algorithm :

1. Initialize weights at random

2. Iteratively update each weight according to the rule:

w
(l)
i,j = w

(l)
i,j − η

∂E

∂w
(l)
i,j

where η is the learning rate.
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Overfitting: We minimize E very well but generalize poorly

Normal fitting Overfitting

Splittings to avoid overfitting
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The deep architectures

More layers With adaptation
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Unsupervised embedding to perform community detection

Recalling conductance-based community detection

Find the partition V = S ∪ Sc satisfying:

hG = min
S

hS = min
S

cut(S ,Sc)

vol(S)
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Laplacian matrix

L = D − A

• D: Diagonal degree matrix

• A: Adjacency matrix

The Laplacian and functions on the graph

f TLf =
1

2

∑
i,j

aij (f (i)− f (j))2
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Rewriting using the Laplacian

hG = min
S

1
>
S L1S

1
>
S D1S
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Rewriting using the Laplacian

hG = min
S

1
>
S L1S

1
>
S D1S

≈ min
g

g>Lg

g>Dg︸ ︷︷ ︸
eigenvalue problem

Graph Eigenvectors of RW-Lap

Embedding
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Multi-class clustering

Multi-class Spectral Clustering algorithm:

1. Compute the first K eigevectors of D−1L = I− P

2. Interpret the eigenvectors as coordinates in RK

3. Apply k-means

Eigenvectors
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Multi-class clustering

Multi-class Spectral Clustering algorithm:

1. Compute the first K eigevectors of D−1L = I− P

2. Interpret the eigenvectors as coordinates in RK

3. Apply k-means

Eigenvectors Interpretation k-means result
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Attributed network: Graph + Feature vector on nodes

• A ∈ RN×N : Adjacency matrix

• X ∈ RN×D : Feature matrix
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From :

ŷ = σ(l)(W(l)h(l−1))

h(k) = σ(k)(W(k)h(k−1))

Do :

Ŷ = σ(l)(W(l)L̃H(l−1))

H(k) = σ(k)(W(k)L̃H(k−1))

• L̃ = D̃−
1
2 ÃD̃−

1
2

• Ã = A + I
• H(0) = X



Graph Convolutional Neural Networks

Machine Learning on Graphs Graph Convolutional Networks November 16, 2021 33 / 38

At the node level

h(k)v = W(k)
∑

u∈N (v)

h
(k−1)
u√

d(u)
√

d(v)
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Node classification

• Output Ŷ ∈ R|YL| is a linear layer

Ŷ = W (l)H(l−1)

• Weight matrices W(l), W(l−1), ..., optimized to minimize (Cross-entropy)

E = −
∑
c∈YL

F∑
f=1

Ycf ln(Ŷcf )

. We can update the weights in batches (only measuring E in a subset of
training examples)
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Graph classification

• Output of Gi , Ŷi,: ∈ R|YL|, is an embedding average + (opt. linear layer)

Ŷi,: =
∑
v∈V

h(l)v

• Weight matrices W(l), W(l−1), ..., optimized to minimize (Cross-entropy)

E = −
∑
c∈YL

F∑
f=1

Ycf ln(Ŷcf )
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Link prediction

• Output is a dot product of embeddings

Ŷij = Âij = σ(h
(l)>
i h

(l)
j )

• Weight matrices W(l), W(l−1), ..., optimized to minimize (Cross-entropy)

E = −
∑
i,j

Aij ln(Âij)
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The general message passing procedure

• Step 1: Message dispatching

• Step 2: State update

h(l)v = φ(l)
(
h(l−1)v ,Ψ

(
{ψ(l)h(l−1)u |u ∈ Nv}

))

• h
(l)
v : state of node v at layer l

• φ, ψ: arbitrary transformations

• Ψ: permutation invariant function
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The general message passing procedure

• Step 1: Message dispatching

• Step 2: State update

h(l)v = φ(l)
(
h(l−1)v ,Ψ

(
{ψ(l)h(l−1)u |u ∈ Nv}

))

GCN is a special case

mv
u = Ψ(l)(h(l−1)u =

h
(l−1)
u√

d(u)
√

d(v)

Mv = Ψ({mv
u |u ∈ Nv}) =

∑
u∈Nv

mv
u

h(l)v = φ(l)
(
h(l−1)v ,Mv

)
= σ(W (l)Mv )



Graph Neural Networks

Machine Learning on Graphs Graph Convolutional Networks November 16, 2021 38 / 38

Generalizations (hot research topic)
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