Machine Learning on Networks

Esteban Bautista-Ruiz, Lionel Tabourier

LIP6 - CNRS and Université Pierre et Marie Curie

first_name.last_name@lip6.fr

November 16, 2021

Introduction

Motivation Machine Learning on Regular Domains Machine Learning on Irregular Domains

Neural Networks The multi-layer perceptron

Machine Learning on Graphs Spectral Clustering Graph Convolutional Networks

Motivation

The big data era

- 36 million web-sites created per minute
- 188 million emails sent per minute
- 55 thousand photos posted per minute
- 5.5 million videos watched per minute
- 4.3 billion people connected to Internet

Motivation

The big data era

- 36 million web-sites created per minute
- 188 million emails sent per minute
- 55 thousand photos posted per minute
- 5.5 million videos watched per minute
- 4.3 billion people connected to Internet

Goal

∎

- Categorize websites by topic
- Categorize emails as spam or not
- 6
- Categorize photographies by genre

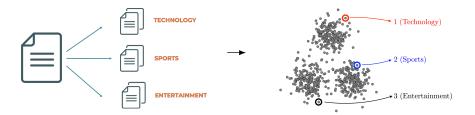
- Predict social trends based on videos watched
- Predict political preferences based on navigation patterns

Classification

Classification



Classification



$$\mathcal{F}:\mathbb{R}^d o \{1,\ldots,K\}$$

Regression

obama vp	20,500,000 result
obama running mate	1,980,000 result
obama nation	49,400,000 result
obama biden	2,410,000 result
obama girl	23,100,000 result
obama antichrist	802,000 result
obama berlin	6,310,000 result
obama berlin speech	1,540,000 result
obama birth certificate	488,000 result
obama muslim	9,810,000 result
	clos

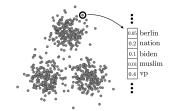
Regression

obama vp	20,500,000 results
obama running mate	1,980,000 results
obama nation	49,400,000 results
obama biden	2,410,000 results
obama girl	23,100,000 results
obama antichrist	802,000 results
obama berlin	6,310,000 results
obama berlin speech	1,540,000 results
obama birth certificate	488,000 results
obama muslim	9,810,000 results
	close



Regression

obama vp	20,500,000 results
obama running mate	1,980,000 results
obama nation	49,400,000 results
obama biden	2,410,000 results
obama girl	23,100,000 results
obama antichrist	802,000 results
obama berlin	6,310,000 results
obama berlin speech	1,540,000 results
obama birth certificate	488,000 results
obama muslim	9,810,000 results
	close



$$\mathcal{F}:\mathbb{R}^{d}
ightarrow\mathbb{R}^{m}$$

The goal in machine learning

How to find \mathcal{F} ?

The goal in machine learning

How to find \mathcal{F} ?

Two main approaches:

• Supervised learning : We know \mathcal{F} for some examples

The goal in machine learning

How to find \mathcal{F} ?

Two main approaches:

- Supervised learning : We know \mathcal{F} for some examples
- $\bullet\,$ Unsupervised learning : We do not have any knowledge about ${\cal F}$

Machine Learning on Regular Domains

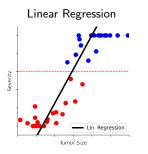
Supervised Learning

The Supervised Learning Paradigm

- Training dataset: set of points $\{(x_1, y_1), \ldots, (x_n, y_n)\}$ where \mathcal{F} is known
- Learning: use the training dataset to infer ${\mathcal F}$ for the remainder of data

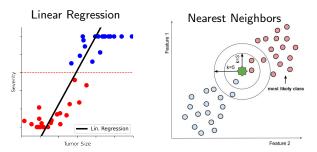
The Supervised Learning Paradigm

- Training dataset: set of points $\{(x_1, y_1), \ldots, (x_n, y_n)\}$ where \mathcal{F} is known
- Learning: use the training dataset to infer ${\mathcal F}$ for the remainder of data



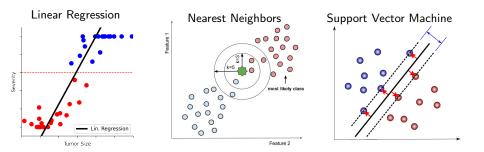
The Supervised Learning Paradigm

- Training dataset: set of points $\{(x_1, y_1), \dots, (x_n, y_n)\}$ where \mathcal{F} is known
- Learning: use the training dataset to infer ${\mathcal F}$ for the remainder of data

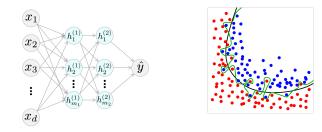


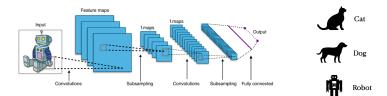
The Supervised Learning Paradigm

- Training dataset: set of points $\{(x_1, y_1), \ldots, (x_n, y_n)\}$ where \mathcal{F} is known
- Learning: use the training dataset to infer ${\mathcal F}$ for the remainder of data



Modern methods: Neural networks





Machine Learning on Regular Domains

Unsupervised Learning

Introduction

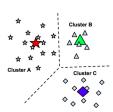
The Unsupervised Learning Paradigm

- No training dataset
- Learning: find patterns in the data
- Hypothesis: similar points are likely to be of the same category

The Unsupervised Learning Paradigm

- No training dataset
- Learning: find patterns in the data
- Hypothesis: similar points are likely to be of the same category

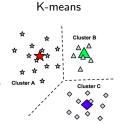
Classical methods

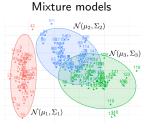


K-means

The Unsupervised Learning Paradigm

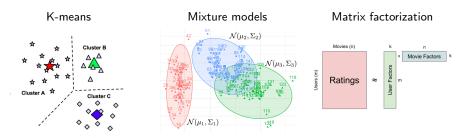
- No training dataset
- Learning: find patterns in the data
- Hypothesis: similar points are likely to be of the same category





The Unsupervised Learning Paradigm

- No training dataset
- Learning: find patterns in the data
- Hypothesis: similar points are likely to be of the same category



Modern methods: Autoencoders

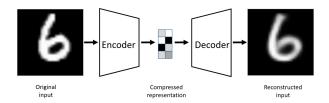


Image taken from [D. Bank et al. Autoencoders. arXiv preprint arXiv:2003.05991]

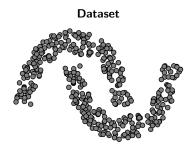
Introduction

Machine Learning on Regular Domains

Machine Learning on Irregular Domains

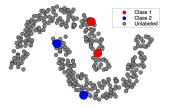
The Need for Machine Learning on Networks

1. Data often lies in a low dimensional manifold

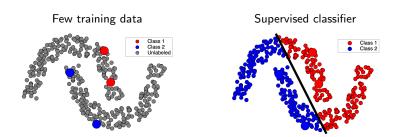


- 1. Data often lies in a low dimensional manifold
- 2. Labelled data are often expensive to collect

Few training data



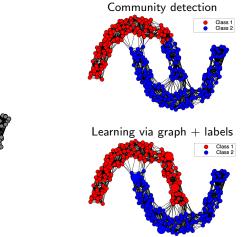
- 1. Data often lies in a low dimensional manifold
- 2. Labelled data are often expensive to collect



- 1. Data often lies in a low dimensional manifold
- 2. Labelled data are often expensive to collect

Graph from data

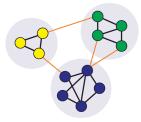
- 1. Data often lies in a low dimensional manifold
- 2. Labelled data are often expensive to collect



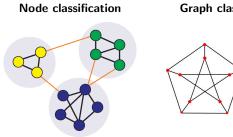
Graph from data

- 1. Data often lies in a low dimensional manifold
- 2. Labelled data are often expensive to collect
- 3. Network-structured data are ubiquitous

Node classification

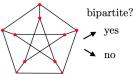


- Documents by topic
- Email spam or not
- Power shutdown

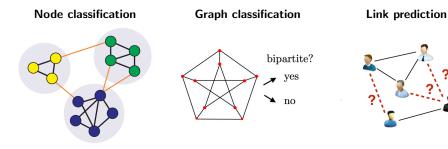


- Documents by topic •
- Email spam or not •
- Power shutdown

Graph classification



- Graph isomorphism
- Drug synthesis
- Voice recognition



- Documents by topic
- Email spam or not
- Power shutdown

- Graph isomorphism
- Drug synthesis
- Voice recognition

- Predict failures
- Social modeling
- Text generation

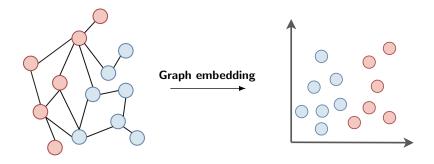
In all cases, we still look for a function \mathcal{F} . Yet, it is now supported in a graph-based domain instead of a euclidean one.

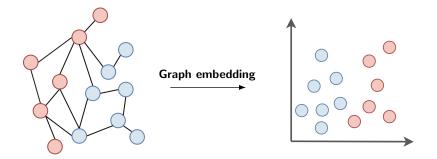
- Node classification: the domain of ${\mathcal F}$ is the set of vertices
- Graph classification: the domain of $\mathcal F$ is the space of all graphs
- Link prediction: the domain of \mathcal{F} is the set of edges

- How to learn \mathcal{F} supported on graph data?
 - ▷ Cannot use ML models that operate on euclidean domains or regular grids

- How to learn \mathcal{F} supported on graph data?
 - ▷ Cannot use ML models that operate on euclidean domains or regular grids
- Graphs are combinatorial objects where optimization leads to exponential search
 - $\triangleright\,$ Node classification: groups of nodes with small cut
 - ▷ Graph classification: existence of a cycle

- How to learn \mathcal{F} supported on graph data?
 - ▷ Cannot use ML models that operate on euclidean domains or regular grids
- Graphs are combinatorial objects where optimization leads to exponential search
 - $\triangleright\,$ Node classification: groups of nodes with small cut
 - ▷ Graph classification: existence of a cycle
- These limitations are relaxed by embedding the graph into an euclidean space
 - Embeddings can be done via matrix factorization or diffusion processes





The recipe of graph-based machine learning

Learning on graphs = graph embedding + model for learning on euclidean data

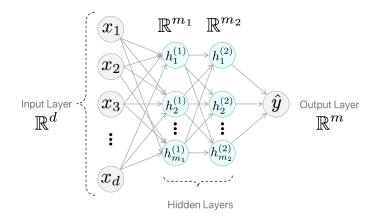
Introduction

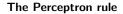
Motivation Machine Learning on Regular Domains Machine Learning on Irregular Domains

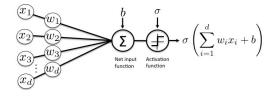
Neural Networks The multi-layer perceptron

Machine Learning on Graphs Spectral Clustering Graph Convolutional Networks

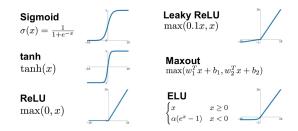
The architecture



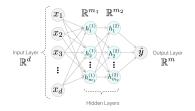




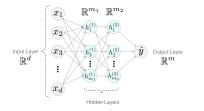
Activation functions



The output



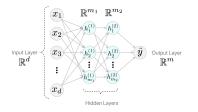
$$\hat{\mathbf{y}} = \sigma^{(l)}(\mathbf{W}^{(l)} \dots \sigma^{(2)}(\mathbf{W}^{(2)}\sigma^{(1)}(\mathbf{W}^{(1)}\mathbf{x}))\dots)$$



$$\hat{\mathbf{y}} = \sigma^{(l)} (\mathbf{W}^{(l)} h^{(l-1)})$$
$$h^{(k)} = \sigma^{(k)} (\mathbf{W}^{(k)} h^{(k-1)})$$

 Training: adjust W^(·) to minimize E = ||ŷ_i - y_i|| on the training set (SGD algorithm)

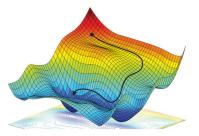
The output



- Training: adjust W^(·) to minimize E = ||ŷ_i y_i|| on the training set (SGD algorithm)
- The dilemma: width vs depth
 - ▷ Deep Neural Network: Networks with more than 2 hidden layers
 - Empirically more layers improves learning but significantly complicates training

The Gradient Descent Algorithm

The loss $E = \|\hat{\mathbf{y}}_i - \mathbf{y}_i\|$ is a high-dimensional function of the weights $\mathbf{W}^{(\cdot)}$



Algorithm :

- 1. Initialize weights at random
- 2. Iteratively update each weight according to the rule:

$$w_{i,j}^{(l)} = w_{i,j}^{(l)} - \eta \frac{\partial E}{\partial w_{i,j}^{(l)}}$$

where η is the learning rate.

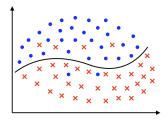
Neural Networks

The multi-layer perceptron

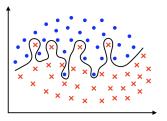
The Overfitting problem

Overfitting: We minimize E very well but generalize poorly

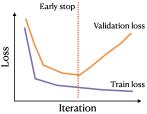
Normal fitting



Overfitting



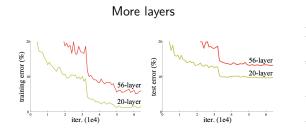
Splittings to avoid overfitting



Neural Networks

The multi-layer perceptron

The deep architectures



With adaptation

model	top-1 err.	top-5 err.
VGG-16 [41]	28.07	9.33
GoogLeNet [44]	-	9.15
PReLU-net [13]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

Introduction

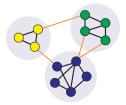
Motivation Machine Learning on Regular Domains Machine Learning on Irregular Domains

Neural Networks The multi-layer perceptron

Machine Learning on Graphs Spectral Clustering Graph Convolutional Networks

Spectral Clustering on Graphs

Unsupervised embedding to perform community detection



Recalling conductance-based community detection

Find the partition $\mathcal{V} = S \cup S^c$ satisfying:

$$h_G = \min_S h_S = \min_S \frac{\operatorname{cut}(S, S^c)}{\operatorname{vol}(S)}$$

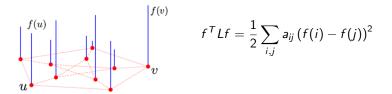
The Laplacian matrix

Laplacian matrix

$$L = D - A$$

- D: Diagonal degree matrix
- A: Adjacency matrix

The Laplacian and functions on the graph



Rewriting using the Laplacian

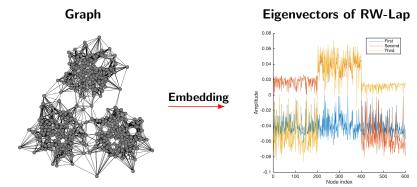
$$h_G = \min_S \frac{\mathbb{1}_S^\top \mathbf{L} \mathbb{1}_S}{\mathbb{1}_S^\top \mathbf{D} \mathbb{1}_S}$$

Rewriting using the Laplacian

$$h_{G} = \min_{S} \frac{\mathbb{1}_{S}^{\top} \mathsf{L} \mathbb{1}_{S}}{\mathbb{1}_{S}^{\top} \mathsf{D} \mathbb{1}_{S}} \approx \min_{g} \frac{\mathbf{g}^{\top} \mathsf{L} \mathbf{g}}{\mathbf{g}^{\top} \mathsf{D} \mathbf{g}}$$

Rewriting using the Laplacian

Rewriting using the Laplacian



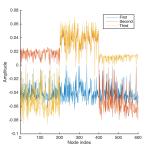
Spectral Clustering

Spectral Clustering

Multi-class clustering

Multi-class Spectral Clustering algorithm:

1. Compute the first K eigevectors of $\mathbf{D}^{-1}\mathbf{L} = \mathbb{I} - \mathbf{P}$



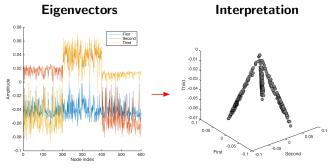
Eigenvectors

Spectral Clustering

Multi-class clustering

Multi-class Spectral Clustering algorithm:

- **1.** Compute the first *K* eigevectors of $\mathbf{D}^{-1}\mathbf{L} = \mathbb{I} \mathbf{P}$
- **2.** Interpret the eigenvectors as coordinates in \mathbb{R}^{K}

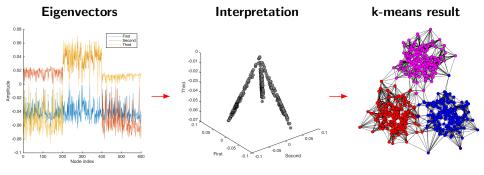


Spectral Clustering

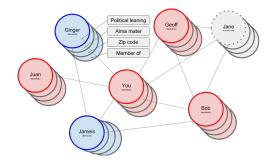
Multi-class clustering

Multi-class Spectral Clustering algorithm:

- **1.** Compute the first K eigevectors of $\mathbf{D}^{-1}\mathbf{L} = \mathbb{I} \mathbf{P}$
- 2. Interpret the eigenvectors as coordinates in \mathbb{R}^{K}
- 3. Apply k-means



Attributed network: Graph + Feature vector on nodes



- $A \in \mathbb{R}^{N \times N}$: Adjacency matrix
- $X \in \mathbb{R}^{N \times D}$: Feature matrix

From :

$$\hat{\mathbf{y}} = \sigma^{(l)} (\mathbf{W}^{(l)} h^{(l-1)})$$
$$h^{(k)} = \sigma^{(k)} (\mathbf{W}^{(k)} h^{(k-1)})$$

Do :

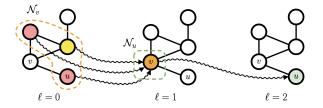
$$\hat{\mathbf{Y}} = \sigma^{(l)} (\mathbf{W}^{(l)} \widetilde{L} H^{(l-1)})$$
$$H^{(k)} = \sigma^{(k)} (\mathbf{W}^{(k)} \widetilde{L} H^{(k-1)})$$

•
$$\widetilde{L} = \widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}$$

•
$$\widetilde{A} = A + \mathbb{I}$$

• $H^{(0)} = X$

At the node level



$$h_{v}^{(k)} = \mathbf{W}^{(k)} \sum_{u \in \mathcal{N}(v)} \frac{h_{u}^{(k-1)}}{\sqrt{d(u)}\sqrt{d(v)}}$$

Node classification

• Output $\hat{\mathbf{Y}} \in \mathbb{R}^{|\mathcal{Y}_L|}$ is a linear layer

$$\mathbf{\hat{Y}} = W^{(l)} H^{(l-1)}$$

• Weight matrices **W**^(/), **W**^(/-1), ..., optimized to minimize (Cross-entropy)

$$E = -\sum_{c \in \mathcal{Y}_L} \sum_{f=1}^{F} \mathbf{Y}_{cf} \ln(\hat{\mathbf{Y}}_{cf})$$

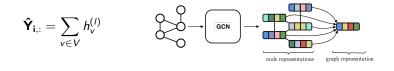
▷ We can update the weights in batches (only measuring E in a subset of training examples)

Machine Learning on Graphs

Graph Convolutional Networks

Graph classification

• Output of \mathcal{G}_i , $\mathbf{\hat{Y}}_{i,:} \in \mathbb{R}^{|\mathcal{Y}_L|}$, is an embedding average + (opt. linear layer)



• Weight matrices $\mathbf{W}^{(l)}$, $\mathbf{W}^{(l-1)}$, ..., optimized to minimize (Cross-entropy)

$$E = -\sum_{c \in \mathcal{Y}_L} \sum_{f=1}^{F} \mathbf{Y}_{cf} \ln(\hat{\mathbf{Y}}_{cf})$$

Link prediction

• Output is a dot product of embeddings

$$\mathbf{\hat{Y}_{ij}} = \mathbf{\hat{A}_{ij}} = \sigma(h_i^{(I)\top} h_j^{(I)})$$

• Weight matrices **W**⁽¹⁾, **W**⁽¹⁻¹⁾, ..., optimized to minimize (Cross-entropy)

$$E = -\sum_{i,j} \mathbf{A}_{ij} \ln(\hat{\mathbf{A}}_{ij})$$

The general message passing procedure

- Step 1: Message dispatching
- Step 2: State update

$$h_{v}^{(l)} = \phi^{(l)}\left(h_{v}^{(l-1)}, \Psi\left(\{\psi^{(l)}h_{u}^{(l-1)}| u \in \mathcal{N}_{v}\}\right)\right)$$

- $h_v^{(I)}$: state of node v at layer I
- ϕ, ψ : arbitrary transformations
- Ψ : permutation invariant function

The general message passing procedure

- Step 1: Message dispatching
- Step 2: State update

$$h_{v}^{(l)} = \phi^{(l)}\left(h_{v}^{(l-1)}, \Psi\left(\{\psi^{(l)}h_{u}^{(l-1)} | u \in \mathcal{N}_{v}\}\right)\right)$$

$$m_{u}^{v} = \Psi^{(l)}(h_{u}^{(l-1)} = \frac{h_{u}^{(l-1)}}{\sqrt{d(u)}\sqrt{d(v)}}$$
$$M_{v} = \Psi(\{m_{u}^{v}|u \in \mathcal{N}_{v}\}) = \sum_{u \in \mathcal{N}_{v}} m_{u}^{v}$$
$$h_{v}^{(l)} = \phi^{(l)}(h_{v}^{(l-1)}, M_{v}) = \sigma(W^{(l)}M_{v})$$

GCN is a special case

Machine Learning on Graphs

Graph Convolutional Networks

Graph Neural Networks

Generalizations (hot research topic)

Model	Neighborhood Aggregation $\mathbf{h}_v^{\ell+1}$
NN4G [88]	$\sigma \Big(\mathbf{w}^{\ell+1^{T}} \mathbf{x}_{v} + \sum_{i=0}^{\ell} \sum_{c_{k} \in \mathcal{C}} \sum_{u \in \mathcal{N}_{v}^{c_{k}}} w_{c_{k}}^{i} * \mathbf{h}_{u}^{i} \Big)$
GNN [104]	$\sum_{u \in \mathcal{N}_v} MLP^{\ell+1} \Big(\mathbf{x}_u, \mathbf{x}_v, \mathbf{a}_{uv}, \mathbf{h}_u^\ell \Big)$
GraphESN [44]	$\sigma \Big(\mathbf{W}^{\ell+1} \mathbf{x}_u + \hat{\mathbf{W}}^{\ell+1} [\mathbf{h}^{\ell}_{u_1}, \dots, \mathbf{h}^{\ell}_{u_{\mathcal{N}_v}}] \Big)$
GCN [72]	$\sigma \Big(\mathbf{W}^{\ell+1} \sum_{u \in \mathcal{N}(v)} \mathbf{L}_{vu} \mathbf{h}^{\ell}_{u} \Big)$
GAT [120]	$\sigma \Big(\sum_{u \in \mathcal{N}_v} lpha_{uv}^{\ell+1} * \mathbf{W}^{\ell+1} \mathbf{h}_u \Big)$
ECC [111]	$\sigma\left(\frac{1}{ \mathcal{N}_v }\sum_{u\in\mathcal{N}_v}MLP^{\ell+1}(\mathbf{a}_{uv})^T\mathbf{h}_u^\ell\right)$
R-GCN [<u>105</u>]	$\sigma \Big(\sum_{c_k \in \mathcal{C}} \sum_{u \in \mathcal{N}_v^{c_k}} rac{1}{ \mathcal{N}_v^{c_k} } \mathbf{W}_{c_k}^{\ell+1} \mathbf{h}_u^\ell + \mathbf{W}^{\ell+1} \mathbf{h}_v^\ell \Big)$
GraphSAGE [54]	$\sigma \Big(\mathbf{W}^{\ell+1}(\tfrac{1}{ \mathcal{N}_v } [\mathbf{h}_v^\ell, \sum_{u \in \mathcal{N}_v} \mathbf{h}_u^\ell]) \Big)$
CGMM [<u>3</u>]	$\sum_{i=0}^{\ell} w^i * \left(\sum_{c_k \in \mathcal{C}} w^i_{c_k} * \left(rac{1}{ \mathcal{N}_v^{c_k} } \sum_{u \in \mathcal{N}_v^{c_k}} \mathbf{h}^i_u ight) ight)$
GIN [131]	$MLP^{\ell+1} \Big(ig(1+\epsilon^{\ell+1}oldsymbol{ extsf{h}}_v + \sum_{u\in\mathcal{N}_v}oldsymbol{ extsf{h}}_u^\ell \Big)$

Machine Learning on Graphs

Graph Convolutional Networks