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Difference?
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Random graph Graph with communities
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Community structure
Groups of nodes more densely connected between them than towards
the rest of the network.

Goal
Automatically identify communities

Applications

Recommendation systems

Organize websites by topic

Epidemic spreading

Data clustering

...
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MNIST: images of handwritten
digits

How to automatically organize
images of same digits?
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K nearest neighbors graph

Data instances linked to their K
closest neighbors.

Edge weight proportional to
similarity

wi,j = ‖xi − xj‖−1

wi,j = exp{−‖xi−xj‖2

σ }

wi,j = 〈xi , xj〉
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Desirable community properties
Communities should be connected

At least one path between any two vertices of the community
Paths should only vertices of the community

Community densities should be higher than the graph density

Community definitions

Loosest definition: connected components (O(n + m) with BFS)

Strictest definition: maximal cliques (NP-complete)

Common definition: something in between (NP-hard)
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How to objectively assess if a group of nodes is a
community?

Three main approaches:

Density-based metrics

Modularity-based metrics

Graph cut-based metrics
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Graph G = (V ,E) : m links, n nodes

Group S ⊆ V : subset of vertices

Degree d(u): split as d(u) = d(u)in + d(u)out (links to S and Sc)

Rationale: Nodes in S should be more connected to S than to Sc ,
hence d(u)in >> d(u)out , for all u ∈ S.

Community detection task

Find the disjoint partitioning V = S1 ∪ · · · ∪ Sk that maximizes the
following quantity:

k∑
i=1

∑
v∈Si

d(v)in − d(v)out

• Necessary to constraint k , otherwise favors outliers.
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Useful definitions

Volume of S: vol(S) =
∑

u∈S d(u)

Volume of G: vol(G) =
∑

u∈V d(u)

In a random graph with fixed degree distribution

Probability for an edge endpoint to fall in S: vol(S)
vol(G)

Probability for a link to be in S: vol(S)2

vol(G)2

Expected number of links in S: vol(G)
2 · vol(S)2

vol(G)2 = vol(S)2

2vol(G)
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Rationale: The actual number of links in S should be higher than the
expected number of links in a comparable random graph. Hence:

∑
u∈S

d(u)in

2
>

vol(S)2

2vol(G)

Community detection task

Find the disjoint partitioning V = S1 ∪ · · · ∪ Sk that maximizes the
following modularity quantity:

Q =
k∑

i=1

∑
u∈Si

d(u)in

vol(G)
− vol(Si)

2

vol(G)2

•Q ∈ [−0.5, 1].
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Ring of cliques: α cliques of size β

Qsingle = 1− 2
β(β − 1) + 2

− 1
α

Qpairs = 1− 1
β(β − 1) + 2

− 2
α
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Ring of cliques: α cliques of size β

Qsingle > Qpairs ⇐⇒ β(β − 1) + 2 > α

Suppose 30 cliques of size 5 then:

α = 30 and β(β − 1) + 2 = 22⇒ Qsingle < Qpairs

Qsingle = 0.876, Qpairs = 0.888

counter-intuitive
Tendency to favour large communities...

... may appear at any length scale

13/36
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Graph cut: edges between S and Sc

cut(S,Sc) =
∑
u∈S

∑
v∈Sc

wuv

Conductance: ratio of external and internal edges of S

hS =
cut(S,Sc)

min(vol(S), vol(Sc))
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Rationale: A community S should have more links internally than
externally, hence a small conductance.

Community detection task

Find the disjoint partitioning V = S1 ∪ · · · ∪ Sk that minimizes the
graph conductance:

hG =
1
k

k∑
i=1

hSi

•hG ∈ [0, 1].
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Label propagation algorithm

Near linear time algorithm to detect community structures in large-scale networks -
Raghavan et al.

Step 1: give a unique label to each node in the network

Step 2: Arrange the nodes in the network in a random order

Step 3: for each node in the network (in this random order) set
its label to a label occurring with the highest frequency among its
neighbours

Step 4: go to 2 as long as there exists a node with a label that
does not have the highest frequency among its neighbours.

Ties resolved randomly

17/36
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Initial network Step 1
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Step 2: random order of vertices [3,8,12,2,5,9,1,7,4,10,6,11]

Step 3:

Init assignment
Processing node 3 Processing node 8
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Step 2: random order of vertices [3,8,12,2,5,9,1,7,4,10,6,11]

Step 3
(continuation):

Processing node 12
Processing node 2 Processing node 5
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Step 2: random order of vertices [3,8,12,2,5,9,1,7,4,10,6,11]

Step 3 (continuation):

Processing node 9
Processing node 1 Processing node 7
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Step 2: random order of vertices [3,8,12,2,5,9,1,7,4,10,6,11]

Step 3 (continuation):

Processing node 4
Processing node 10 Processing node 6
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Step 2: random order of vertices [3,8,12,2,5,9,1,7,4,10,6,11]

Step 3 (continuation):

Processing node 11

Not all nodes assigned to the majority
class of the neighbors.

We repeat step 2 and step 3



Introduction
Global methods for finding communities
Local methods for finding communities

Label propagation algorithm
Louvain algorithm

Louvain algorithm

Step 1. Initialization: node = community

Step 2. Remove node u from its community

Step 3. Insert node u in a neighboring community that
maximizes Q

Step 4. Iterate from step 1 until the partition does not evolve

Can be trapped in bad local minima
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Louvain algorithm

Step 1. Initialization: node = community

Step 2. Remove node u from its community

Step 3. Insert node u in a neighboring community that
maximizes Q

Step 4. Iterate from step 1 until the partition does not evolve

Step 5. Transform the communities into (hyper-)nodes and go
back to step 1 with the new graph

Leads to better local optima

25/36
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First passage, first iteration: isolated nodes
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1 is put in C(4), best Q increase
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considering 2, its neighboring communities are...
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2 is put in C(1,4), best Q increase
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considering 3, its neighboring communities are...
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3 stays in the same community C(0,3), otherwise Q decreases
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and so on...
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First passage, second iteration: considering 0...
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0 is put in C(1,2,4), best Q increase
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after 4 iterations, no change anymore
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Second passage
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Third passage
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Outcome: non-binary dendrogram
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How to evaluate the quality of the algorithm’s output?

If no extra information is available
Measure modularity, density, conductance, etc

If a dataset with ground truth communities is available

Measure normalized mutual information
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Ground truth communities Algorithm assignment
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Normalized mutual information
Score to evaluate a community assignment when true communities are
known:

NMI(T ,C) =
2 I(T ,C)

H(T ) + H(C)

T : ground truth labels

C : algorithm labels

H : Community entropies: log of samples per label.

I(T ,C) : Mutual information (log of correlation between gt labels and algo labels).

NMI score between 0 (no mutual information) and 1 (perfect correlation)
Full details in : https://course.ccs.neu.edu/cs6140sp15/7_locality_cluster/

Assignment-6/NMI.pdf

 https://course.ccs.neu.edu/cs6140sp15/7_locality_cluster/Assignment-6/NMI.pdf 
 https://course.ccs.neu.edu/cs6140sp15/7_locality_cluster/Assignment-6/NMI.pdf 
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How to identify the community of a seed node?

Seed node Algorithm output
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Personalized PageRank:
Algorithm to rank the importance of
vertices with respect to a seed.

Proposed in seminal paper by
Brin and Page, 1999
(http://ilpubs.stanford.edu:
8090/422/1/1999-66.pdf)

Basis of Google’s search
engine

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
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Step 1. Choose seed node

Step 2. Start a random walker from the seed node

Step 3. After each jump, continue the walk with probability
α or restart it with probability 1− α.

Step 4. After each jump, assign the fraction of visits that
the walker has done to u as the PageRank score of node u.

Step 5. Repeat 3 and 4 until convergence of the scores.
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PageRank score:
probability of finding the
walker at a node
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Rationale: It should be hard for a random walker that starts within a
community to leave the community.

Step 1. Compute personalized PageRank

Step 2. Order the vertices of the graph from the one of largest
PageRank score to the lowest

Step 3. Take the first k vertices of this new ordering as a test
community and measure its conductance

Step 4. Repeat step 3 for all k ∈ [1,n].

Step 5. From the tested communities, return the one with
smallest conductance


	Introduction
	Motivation
	Community definitions
	Measures for identifying communities

	Global methods for finding communities
	Label propagation algorithm
	Louvain algorithm

	Local methods for finding communities
	Personalized PageRank
	PageRank nibble


